

Evolution des teneurs en cadmium dans les sols français sous cultures annuelles : Scénarios pour le prochain siècle

T. Sterckeman, L. Gossiaux, S. Guimont, C. Sirguey, Z. Lin

Programme VARHYPEX, financement MAAF-CASDAR 2015

La contamination des denrées par le Cd

- Le Cd ingéré provient majoritairement des denrées végétales
- Le Cd des végétaux provient de la contamination des sols

Réglementer le Cd dans l'engrais

Proposition de

RÈGLEMENT DU PARLEMENT EUROPÉEN ET DU CONSEIL

établissant les règles relatives à la mise à disposition sur le marché des fertilisants porteurs du marquage CE et modifiant les règlements (CE) n° 1069/2009 et (CE) n° 1107/2009

- a) cadmium (Cd):
 - si le fertilisant porteur du marquage CE a une teneur en phosphore (P) total inférieure à 5 % en masse d'équivalent anhydride phosphorique (P₂O₅): 3 mg/kg de matière sèche, ou
 - 2) si le fertilisant porteur du marquage CE a une teneur en phosphore (P) total égale ou supérieure à 5 % en masse d'équivalent anhydride phosphorique (P₂O₅) («engrais phosphaté»):
 - à compter du [merci à l'Office des publications d'insérer la date d'application du présent règlement]: 60 mg/kg d'anhydride phosphorique (P₂O₅),
 - à compter du [merci à l'office des publications d'insérer la date correspondant à trois ans après la date d'application du présent règlement]: 40 mg/kg d'anhydride phosphorique (P₂O₅), et
 - à compter du [merci à l'Office des publications d'insérer la date correspondant à douze ans après la date d'application du présent règlement]: 20 mg/kg d'anhydride phosphorique (P₂O₅);

Les connaissances actuelles

Science of the Total Environment 485-486 (2014) 319-328

Contents lists available at ScienceDirect

Science of the Total Environment

ABSTRACT

The gradual increase of environmental legislation the period 1980–1995 proutputs via crop uptake EU-27 + Norway (EU-2 by 40%. The current means

Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils

L. Six, E. Smolders *

Department of Earth and Environmental Sciences, Division of Soil and Water Management, K.U. Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium

than values used in the previous EU mass balances (~3 g Cd ha⁻¹ yr⁻¹). Leaching of Cd was estimated with most recent data of soil solution Cd concentrations in 151 soils, which cover the range of European soil properties. No significant time trends were found in the data of net applications of Cd via manure, compost, sludge and lime, all being small sources of Cd at a large scale. Modelling of the future long-term changes in soil Cd concentrations in agricultural top soils under cereal or potato culture predicts soil Cd concentrations to decrease by 15% over the next 100 years in an average scenario, with decreasing trends in some scenarios being more prevalent than increasing trends in other scenarios. These Cd balances have reverted from the general positive balances estimated 10 or more years ago. Uncertainty analysis suggests that leaching is the most uncertain relative to other fluxes.

© 2014 Elsevier B.V. All rights reserved.

Acknowledgements

We acknowledge Fertilizers Europe for financing this study.

Modèle du bilan de Cd dans les sols

$$[Cd]_{sol,n} = [Cd]_{sol,n-1} + \frac{(Q_{Ent} - Q_{Sor})*1000}{M_{sol}}$$

$$Q_{Ent} = Q_{atm} + Q_{pho} + Q_{cal} + Q_{org}$$

$$Q_{Sor} = Q_{lix} + Q_{rec}$$

- Pas de temps annuel
- Dans les 25 cm superficiels (horizon labouré)
- SAU sous culture annuelle (« grande culture »)
- Pour la France entière
- Pour chacune de ses 22 régions administratives
- Chaque unité spatiale assimilée à une parcelle aux propriétés et pratiques culturales homogènes
- Caractérisée par des paramètres correspondant aux moyennes des variables obtenues dans les bases de données

Les scénarios simulés

- PAA: pratiques agricoles actuelles
- BPF: raisonnement de la fertilisation P et N selon COMIFER
- UE: PAA + réduction progressive du Cd dans l'engrais selon règlementation UE
- **BPUE**: BPF + réglementation UE
- BIO: conversion à l'agriculture biologique
- **BIOUE**: BIO + réglementation UE
- Simulés pour les 100 prochaines années

Les postes du bilan

• $Q_{atm}: 0.2 \text{ g ha}^{-1} \text{ an}^{-1}$

- $Q_{pho} = M_{pho} * [Cd]_{pho}$
 - $-M_{pho}$: données statistiques pour PAA
 - $M_{pho} = P_{rec}YC_r P_{org} \text{ pour BPF et BIO (COMIFER)}$ $\text{avec } P_{org} = \sum_{i=1}^{n} m_i P_{org_i} K_{eq_i}$
 - $-[Cd]_{pho}$
 - Scénario PAA : 51 mg Cd (kg P₂O₅)⁻¹
 - Scénario BIO: 47 mg Cd (kg P₂O₅)-1
 - Scénario UE: 51 (3 ans), 40 (9 ans), 20 mg Cd (kg P_2O_5)-1

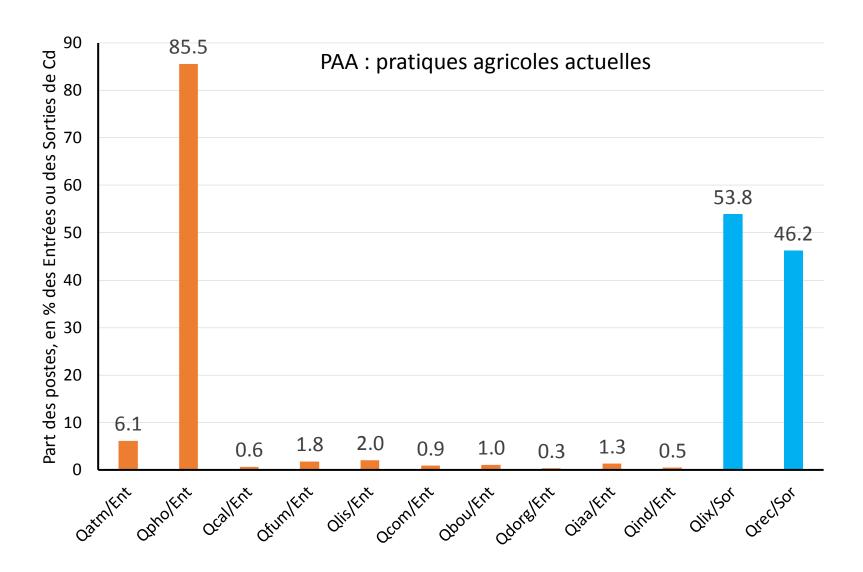
Les postes du bilan

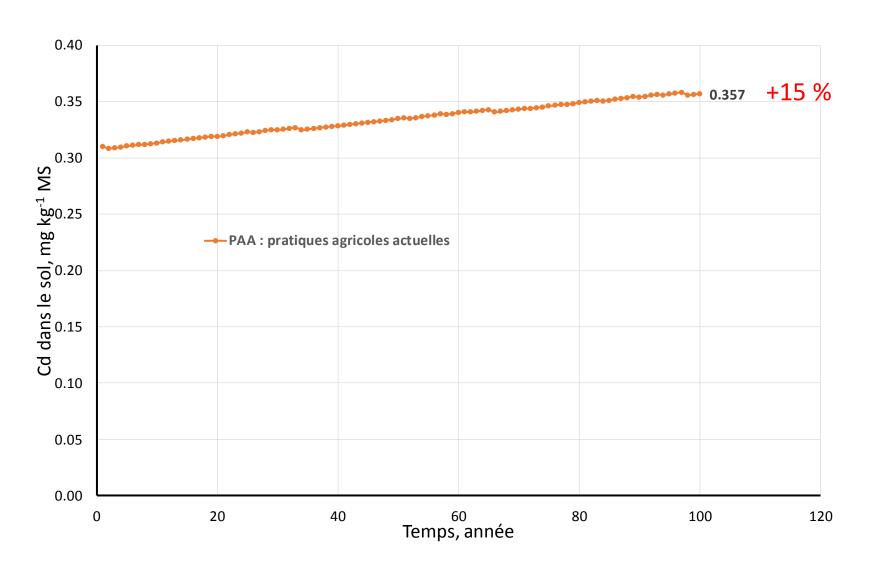
- $Q_{org} = R_N \sum_{i=1}^n m_{org_i} C d_{org_i} K_{Cd_i}$
 - $-R_N = 1$ pour scénario PAA
 - $-R_N$ ≤ 1 pour scénario BPF et BIO (COMIFER)

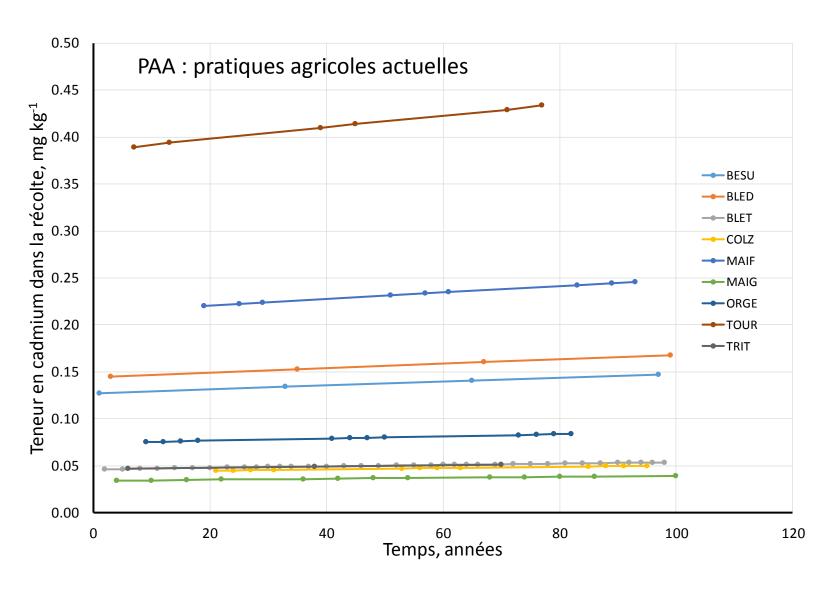
• $Q_{cal} = 0.02 \text{ g ha}^{-1} \text{ an}^{-1} \text{ (ANPEA)}$

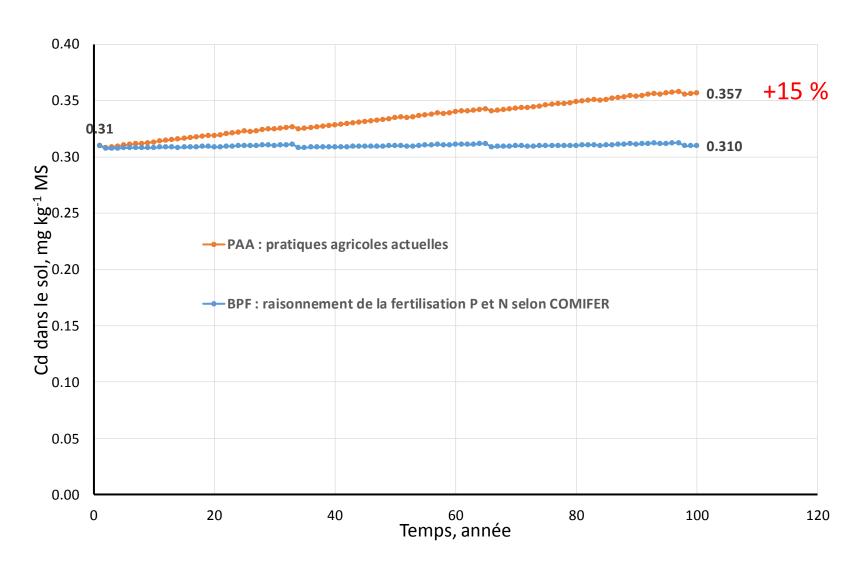
• $Q_{rec} = [Cd]_{rec}Y = TF[Cd]_{sol}Y$ avec $TF = \frac{[Cd]_{rec}}{[Cd]_{sol}}$

Les postes du bilan

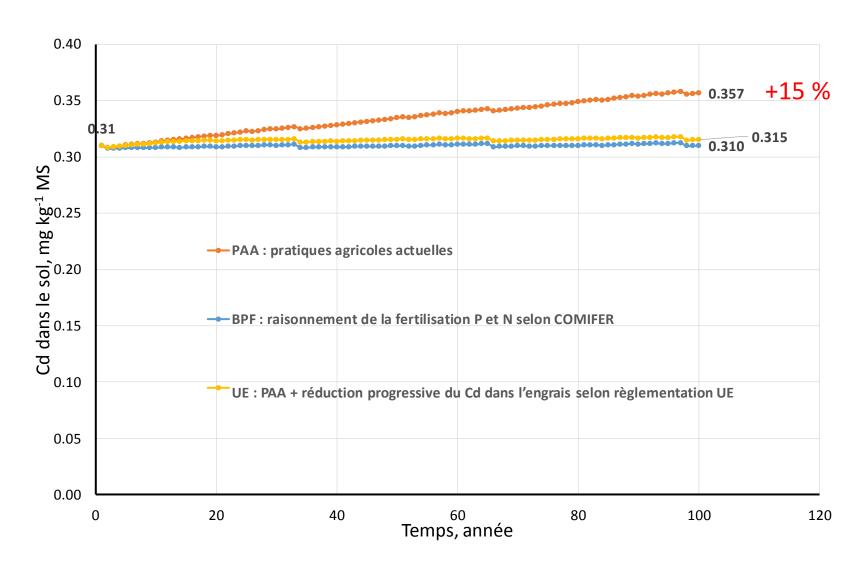

•
$$Q_{lix}=10~W_{lix}~[Cd]_{w}$$
 avec $[Cd]_{w}=\frac{[Cd]_{sol}}{K_{D}}$ et $\log(K_{D})=-0.94+0.51pH_{CaCl2}+0.79\log(C_{org})$ d'après Six et Smolders, 2014, non validé exp.

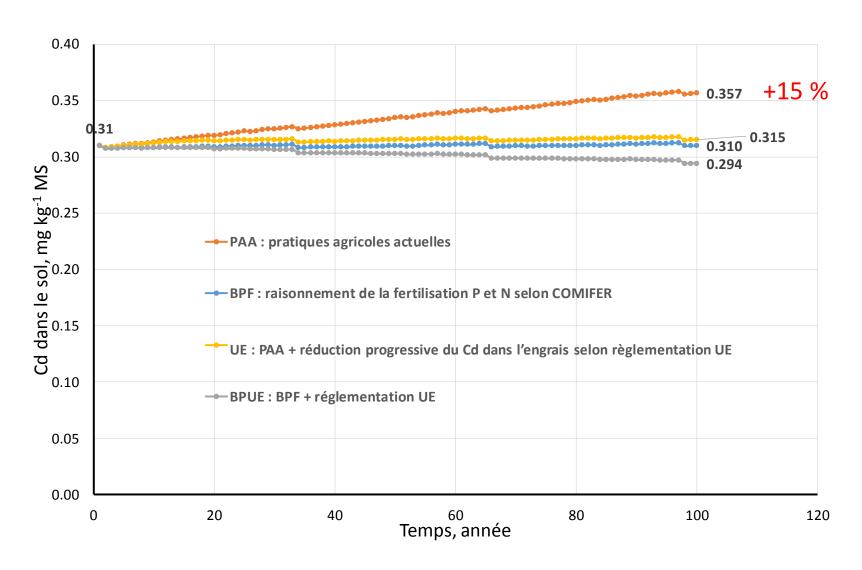

- Après comparaison à données de lixiviation du Cd en plein champ (SOERE-PRO, litt.)
 - $-Q_{lix} = 10 W_{lix} [Cd]_w/6$ (Colmar, Suède)
 - $-Q_{lix} = 10 W_{lix} [Cd]_w/12$ (Feucherolles)

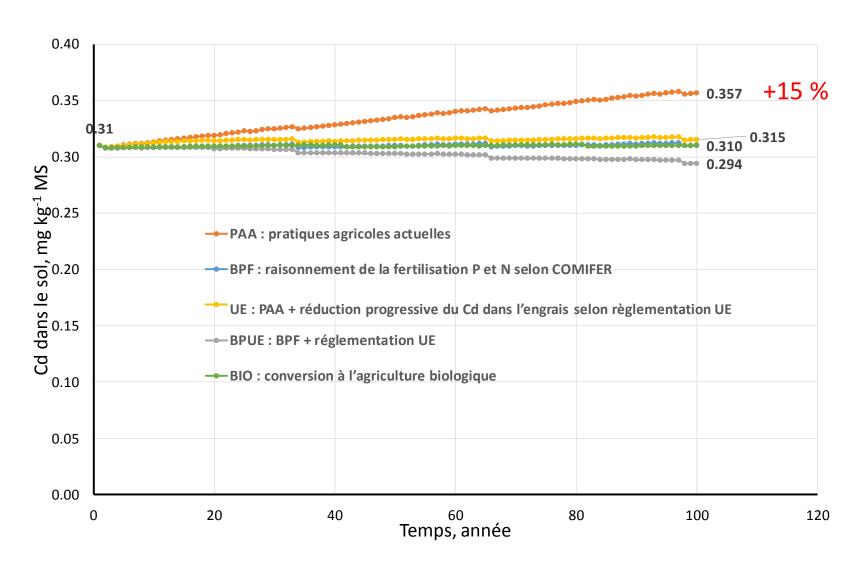

Les sources de données

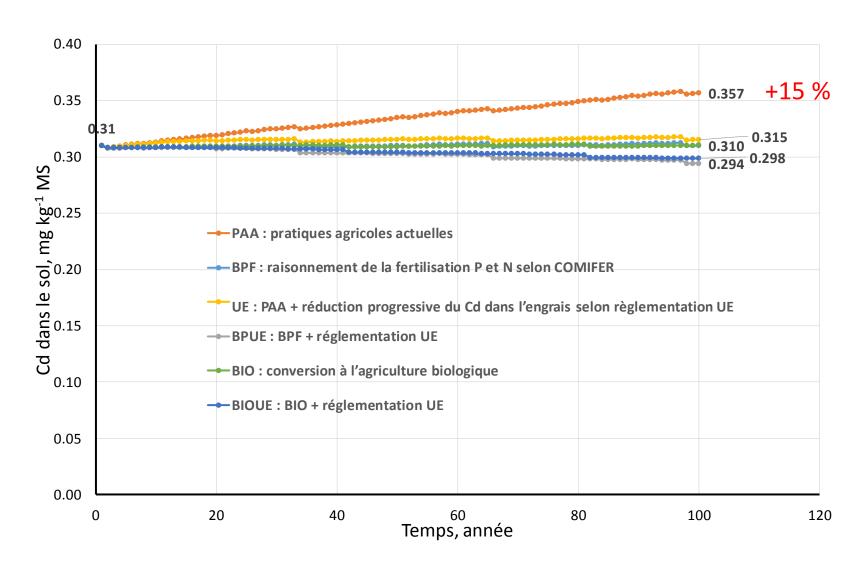

- GIS SOL
 - BDETM : Cd initial
 - BDAT : pH, C org., argile, carbonates, P Olsen
- AGRESTE: SAU, rendements, rotations, fertilisation P des cultures
- FranceAgriMer : quantités de fumier, lisier, CDVOM
- Ministère de l'Environnement : quantités de boues de STEP
- Houot et al. 2014, ESCo MAFOR (INRA, CNRS, IRSTEA)
 - Teneurs Cd, N, P dans les MAFORs
 - Quantités de déchets industriels
- Arvalis et COMIFER
 - Teneur en P dans les récoltes, seuils de diagnostic P des sols, K_{eq_i}
- Météo-France : pluie efficace
- **SOERE-PRO**: données de lixiviation des essais de Feucherolles et Colmar
- ANPEA : données de chaulage (de médiocre qualité)
- Littérature scientifique : TF, Cd des engrais P

Part des postes dans le bilan




Sur-fertilisation phosphatée


Unité spatiale	PAA	BPF	Variation
-	kg P ₂ O ₅ ha ⁻¹	%	
Alsace	6566	3830	-42
Aquitaine	5472	2195	-60
Auvergne	4910	1439	-71
Bourgogne	5753	2245	-61
Bretagne	3764	2395	-36
Centre	5711	3994	-30
Champagne-Ardenne	7931	3851	-51
Corse	5371	4464	-17
Franche-Comté	6160	1788	-71
Ile de France	4827	3173	-34
Languedoc-Roussillon	5026	2828	-44
Limousin	3982	1075	-73
Lorraine	6038	1885	-69
Midi-Pyrénées	5295	1946	-63
Nord-Pas de Calais	5480	1763	-68
Basse-Normandie	4296	1180	-73
Haute-Normandie	5357	2797	-48
Pays de Loire	4281	690	-84
Picardie	5827	4097	-30
Poitou-Charentes	5155	2376	-54
Provence-Alpes- Côte d'Azur	4305	2728	-37
Rhône-Alpes	4730	2067	-56
France	5297	2458	-54


Excès d'amendements organiques

Unité spatiale	Total, scenarios PAA et UE	Total, scenarios BPF et BPFUE	Excès actuel pour fertilisation N
	kg DM ha	(100 yrs) ⁻¹	%
Alsace	137464	137464	0
Aquitaine	155288	155288	0
Auvergne	180808	144647	25
Bourgogne	130811	130811	0
Bretagne	300945	170896	76
Centre	62698	62698	0
Champagne-Ardenne	94372	94372	0
Corse	26024	26024	0
Franche-Comté	190162	182556	4
Île de France	55365	55365	0
Languedoc-Roussillon	67078	67078	0
Limousin	186728	156214	20
Lorraine	171980	171980	0
Midi-Pyrénées	113363	113363	0
Nord-Pas de Calais	216759	216759	0
Basse-Normandie	225842	225842	0
Haute-Normandie	174676	174676	0
Pays de Loire	230046	223256	3
Picardie	100221	100221	0
Poitou-Charentes	126613	126613	0
Provence-Alpes-Côte d'Azur	75333	75333	0
Rhône-Alpes	156184	144606	8

Conclusions

 Grande valeur des bases de données sols, des statistiques agricoles, des essais de plein champ sur le long terme (SOERE-PRO) et autres...

- Si on veut réduire le cadmium dans les sols et les productions agricoles, il faut
 - Mettre fin à la sur-fertilisation phosphatée
 - Limiter la teneur du Cd dans l'engrais

Merci de votre attention!

Science of the Total Environment 639 (2018) 1440-1452

Contents lists available at ScienceDirect

Science of the Total Environment

Cadmium mass balance in French soils under annual crops: Scenarios for the next century

Thibault Sterckeman a,b,*, Lucas Gossiaux c, Sophie Guimont c, Catherine Sirguey a,b, Zhongbing Lin d